• New analyses extend data on beneficial effects of ibezapolstat on the gut microbiome
  • Confirmed ibezapolstat's favorable pharmacokinetics showing low systemic exposure and high colonic concentrations
  • Selected ACX-375 analogues demonstrated in vitro activity against Anthrax (B. anthracis), a Bioterrorism Category A pathogen, including activity against ciprofloxacin resistant Anthrax. Planning is underway for an Anthrax bioterrorism development program
  • Preparation continues to advance ibezapolstat into international Phase 3 clinical trials for treatment of C. difficile Infection (CDI)
  • Preparing to submit requests for regulatory guidance to initiate clinical trials in the European Union, the United Kingdom, Japan and Canada
  • Ibezapolstat has previously received FDA QIDP and Fast-Track Designation from FDA

STATEN ISLAND, N.Y., Sept. 26, 2024 /PRNewswire/ -- Acurx Pharmaceuticals, Inc. (NASDAQ: ACXP) ("Acurx" or the "Company"), a late-stage biopharmaceutical company developing a new class of small molecule antibiotics for difficult-to-treat bacterial infections, today announced results from new analyses that extend data on the beneficial effects of ibezapolstat on the gut microbiome. The data show an increased proportion of Actinobacteriota and increased quantity of beneficial Bacillota (Firmicutes) leading to reversal of dysbiosis and contributing to the CDI anti-recurrence effect of ibezapolstat.

Additionally, ibezapolstat's favorable pharmacokinetics properties were confirmed showing mean systemic exposure below 1mcg/mL and fecal concentrations well in excess of the minimal inhibitory concentration (MIC) for C. difficile.

Microbiological testing of certain ACX-375 DNA pol IIIC analogues in independent qualified laboratories, including the University of Florida, demonstrated in vitro activity with MICs of 0.5-2mcg/mL against B. anthracis (Anthrax), a Bioterrorism Category A pathogen, including activity against ciprofloxacin resistant B. anthracis.

The above results were presented at the premier International C. difficile Symposium (ICDS) held in Bled, Slovenia on September 17-19, 2024. Kevin Garey, PharmD, MS, FIDSA, Professor and Chair, University of Houston College of Pharmacy, Principal Investigator for microbiology and microbiome aspects of the ibezapolstat clinical trial program, and Acurx Scientific Advisory Board member delivered a presentation entitled: Ibezapolstat Preserves Key Clostridium leptum Species. Microbiome Results from the Phase 2, Randomized, Double-blind Study of ibezapolstat Compared with Vancomycin for the Treatment of Clostridioides Difficile Infection.

According to Dr. Garey: "The microbiome data also show an unexpected finding of a unique microbiome signature in two vancomycin-treated patients in the Ph2b trial who experienced recurrence of CDI. Since these changes were evident and observed early during treatment and then consistently until the end of therapy, they may be predictive of pending CDI recurrence and suggest the need to modify therapy."

Robert J. DeLuccia, Executive Chairman of Acurx, stated: "These new data add to and   reinforce ibezapolstat's emerging overall distinctive product profile, particularly the favorable microbiome-related unexpected findings." He added: "Furthermore, the initial in vitro activity shown against the Bioterrorism Category A pathogen B. anthracis (Anthrax) with some of our earlier-stage compounds included a ciprofloxacin-resistant strain. Selective microbiome effects will be tested with these new compounds as they proceed through development to treat infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and other critical gram-positive pathogens in parallel with planning for the Anthrax bioterrorism program.  The presentation is available on the Acurx Pharmaceuticals website www.acurxpharma.com

Acurx has previously announced that it had a successful FDA End-of-Phase 2 Meeting and Phase 3 Readiness for ibezapolstat for the Treatment of C. difficile Infection. Agreement with FDA was reached on key elements to move forward with its international Phase 3 clinical trial program. Agreement was also reached with FDA on the complete non-clinical and clinical development plan for filing of a New Drug Application (NDA) for marketing approval. Planning continues to advance ibezapolstat into international Phase 3 clinical trials for treatment of C. difficile Infection (CDI). Acurx is also preparing to submit requests for regulatory guidance to initiate clinical trials in the European Union, the United Kingdom, Japan and Canada.

Key elements for the two Phase 3, non-inferiority, pivotal trials were confirmed and included agreement on the protocol design, patient population, primary and secondary endpoints, and size of the registration safety database. Based on FDA recommendations, and in anticipation of an EMA Scientific Advice Meeting, the primary efficacy analysis will be performed using a Modified Intent-To-Treat (mITT) population consistent with EMA requirements. This will result in an estimated 450 subjects in the mITT population, randomized in a 1:1 ratio to either ibezapolstat or standard-of-care vancomycin, enrolled into the initial Phase 3 trial. The trial design not only allows determination of ibezapolstat's ability to achieve Clinical Cure of CDI as measured 2 days after 10 days of oral treatment, but also includes assessment of ibezapolstat's potential effect on reduction of CDI recurrence in the target population. In the event non-inferiority of ibezapolstat to vancomycin is demonstrated, further analysis will be conducted to test for superiority.

About the C. difficile Symposium (ICDS)

The International C. difficile Symposium (ICDS) is now established as the premier venue for the review of Clostridium difficile research.

The 1st meeting was held in Kranjska Gora in 2004, the 2nd in Maribor in 2007, while all earlier meetings were in Bled in 2010, 2012, 2015 and in 2018. ICDS in 2020 was held virtually. The 2024 meeting will provide the ideal opportunity to review progress in epidemiology, diagnostics, clinical trials, basic research and in understanding C. difficile pathogenesis and controlling the devastating disease it causes.

About the Ibezapolstat Phase 2 Clinical Trial

The completed multicenter, open-label single-arm segment (Phase 2a) study was followed by a double-blind, randomized, active-controlled, non-inferiority, segment (Phase 2bat 28 US clinical trial sites which together comprise the Phase 2 clinical trial. (see https://clinicaltrials.gov/ct2/show/NCT04247542). This Phase 2 clinical trial was designed to evaluate the clinical efficacy of ibezapolstat in the treatment of CDI including pharmacokinetics and microbiome changes from baseline. from study centers in the United States. In this cohort, 10 patients with diarrhea caused by C. difficile were treated with ibezapolstat 450 mg orally, twice daily for 10 days. All patients were followed for recurrence for 28± 2 days. Per protocol, after 10 patients of the projected 20 Phase 2a patients completed treatment (100% cured infection at End of Treatment).

In the now completed Phase 2b trial segment, which was discontinued due to success, 32 patients with CDI were enrolled and randomized in a 1:1 ratio to either ibezapolstat 450 mg every 12 hours or vancomycin 125 mg orally every 6 hours, in each case, for 10 days and followed for 28 ± 2 days following the end of treatment for recurrence of CDI. The two treatments were identical in appearance, dosing times, and number of capsules administered to maintain the blind. The Company previously reported that the overall observed Clinical Cure rate in the combined Phase 2 trials in patients with CDI was 96% (25 out of 26 patients), based on 10 out of 10 patients (100%) in Phase 2a in the Modified Intent to Treat Population, plus 15 out of 16 (94%) patients in Phase 2b in the Per Protocol Population, who experienced Clinical Cure during treatment with ibezapolstat. Ibezapolstat was well-tolerated, with three patients each experiencing one mild adverse event assessed by the blinded investigator to be drug-related. All three events were gastrointestinal in nature and resolved without treatment.

There were no drug-related treatment withdrawals or no drug-related serious adverse events, or other safety findings of concern. In the Phase 2b vancomycin control arm, 14 out of 14 patients experienced Clinical Cure. The Company is confident that based on the pooled Phase 2 ibezapolstat Clinical Cure rate of 96% and the historical vancomycin cure rate of approximately 81% (Vancocin® Prescribing Information, January 2021), we will demonstrate non-inferiority of ibezapolstat to vancomycin in Phase 3 trials in accordance with the applicable FDA Guidance for Industry (October 2022).

In the Phase 2 clinical trial, the Company also evaluated pharmacokinetics (PK) and microbiome changes and test for anti-recurrence microbiome properties, including the change from baseline in alpha diversity and bacterial abundance, especially overgrowth of healthy gut microbiota Actinobacteria and Firmicute phylum species during and after therapy. Phase 2a data demonstrated complete eradication of colonic C. difficile by day three of treatment with ibezapolstat as well as the observed overgrowth of healthy gut microbiota, Actinobacteria and Firmicute phyla species, during and after therapy. Very importantly, emerging data show an increased concentration of secondary bile acids during and following ibezapolstat therapy which is known to correlate with colonization resistance against C. difficile. A decrease in primary bile acids and the favorable increase in the ratio of secondary-to-primary bile acids suggest that ibezapolstat may reduce the likelihood of CDI recurrence when compared to vancomycin. The company also recently reported positive extended clinical cure (ECC) data for ibezapolstat (IBZ), its lead antibiotic candidate, from the Company's recently completed Phase 2b clinical trial in patients with CDI. This exploratory endpoint showed that 12 patients who agreed to be followed up to three months following Clinical Cure of their infection, 5 of 5 IBZ patients experienced no recurrence of infection. In the vancomycin control arm of the trial, 7 of 7 patients experienced no recurrence of infection. ECC success is defined as a clinical cure at the TOC visit (i.e., at least 48 hours post EOT) and no recurrence of CDI within the 56 ± 2 days post EOT (ECC56) and 84 ± 2 days post EOT (ECC84) in patients who consented to extended observation. In the Phase 2b trial, 100% (5 of 5) of ibezapolstat-treated patients who agreed to observation for up to three months following Clinical Cure of CDI experienced no recurrence of infection.

About Ibezapolstat

Ibezapolstat is the Company's lead antibiotic candidate planning to advance to international Phase 3 clinical trials to treat patients with C. difficile Infection (CDI). Ibezapolstat is a novel, orally administered antibiotic, being developed as a Gram-Positive Selective Spectrum (GPSS®) antibacterial. It is the first of a new class of DNA polymerase IIIC inhibitors under development by Acurx to treat bacterial infections. Ibezapolstat's unique spectrum of activity, which includes C. difficile but spares other Firmicutes and the important Actinobacteria phyla, appears to contribute to the maintenance of a healthy gut microbiome.

In June 2018, ibezapolstat was designated by the U.S. Food and Drug Administration (FDA) as a Qualified Infectious Disease Product (QIDP) for the treatment of patients with CDI and will be eligible to benefit from the incentives for the development of new antibiotics established under the Generating New Antibiotic Incentives Now (GAIN) Act. In January 2019, FDA granted "Fast Track" designation to ibezapolstat for the treatment of patients with CDI. The CDC has designated C. difficile as an urgent threat highlighting the need for new antibiotics to treat CDI.

About Clostridioides difficile Infection (CDI)

According to the 2017 Update (published February 2018) of the Clinical Practice Guidelines for C. difficile Infection by the Infectious Diseases Society of America (IDSA) and Society or Healthcare Epidemiology of America (SHEA), CDI remains a significant medical problem in hospitals, in long-term care facilities and in the community. C. difficile is one of the most common causes of health care- associated infections in U.S. hospitals (Lessa, et al, 2015, New England Journal of Medicine). Recent estimates suggest C. difficile approaches 500,000 infections annually in the U.S. and is associated with approximately 20,000 deaths annually. (Guh, 2020, New England Journal of Medicine). Based on internal estimates, the recurrence rate for the antibiotics currently used to treat CDI is between 20% and 40% among approximately 150,000 patients treated. We believe the annual incidence of CDI in the U.S. approaches 600,000 infections and a mortality rate of approximately 9.3%.

About the Microbiome in C. difficile Infection (CDI) and Bile Acid Metabolism

C. difficile can be a normal component of the healthy gut microbiome, but when the microbiome is thrown out of balance, the C. difficile can thrive and cause an infection. After colonization with C. difficile, the organism produces and releases the main virulence factors, the two large clostridial toxins A (TcdA) and B (TcdB). (Kachrimanidou, Microorganisms 2020, 8, 200; doi:10.3390/microorganisms8020200.) TcdA and TcdB are exotoxins that bind to human intestinal epithelial cells and are responsible for inflammation, fluid and mucous secretion, as well as damage to the intestinal mucosa.

Bile acids perform many functional roles in the GI tract, with one of the most important being maintenance of a healthy microbiome by inhibiting C. difficile growth. Primary bile acids, which are secreted by the liver into the intestines, promote germination of C. difficile spores and thereby increase the risk of recurrent CDI after successful treatment of an initial episode. On the other hand, secondary bile acids, which are produced by normal gut microbiota through metabolism of primary bile acids, do not induce C. difficile sporulation and therefore protect against recurrent disease. Since ibezapolstat treatment leads to minimal disruption of the gut microbiome, bacterial production of secondary bile acids continues which may contribute to an anti-recurrence effect. Beneficial effects of bile acids include a decrease in primary bile acids and an increase in secondary bile acids in patients with CDI, which was observed in the Company's Ph2a trial results and previously reported (CID, 2022).

About Acurx Pharmaceuticals, Inc.

Acurx Pharmaceuticals is a late-stage biopharmaceutical company focused on developing a new class of small molecule antibiotics for difficult-to-treat bacterial infections. The Company's approach is to develop antibiotic candidates with a Gram-positive selective spectrum (GPSS®) that blocks the active site of the Gram-positive specific bacterial enzyme DNA polymerase IIIC (pol IIIC), inhibiting DNA replication and leading to Gram-positive bacterial cell death. Its R&D pipeline includes antibiotic product candidates that target Gram-positive bacteria, including Clostridioides difficile, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterococcus (VRE) and drug-resistant Streptococcus pneumoniae (DRSP). To learn more about Acurx Pharmaceuticals and its product pipeline, please visit www.acurxpharma.com

Forward-Looking Statements

Any statements in this press release about our future expectations, plans and prospects, including statements regarding our strategy, future operations, prospects, plans and objectives, and other statements containing the words "believes," "anticipates," "plans," "expects," and similar expressions, constitute forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, including: whether ibezapolstat will benefit from the QIDP designation; whether ibezapolstat will advance through the clinical trial process on a timely basis; whether the results of the clinical trials of ibezapolstat will warrant the submission of applications for marketing approval, and if so, whether ibezapolstat will receive approval from the FDA or equivalent foreign regulatory agencies where approval is sought; whether, if ibezapolstat obtains approval, it will be successfully distributed and marketed; and other risks and uncertainties described in the Company's annual report filed with the Securities and Exchange Commission on Form 10-K for the year ended December 31, 2023, and in the Company's subsequent filings with the Securities and Exchange Commission. Such forward- looking statements speak only as of the date of this press release, and Acurx disclaims any intent or obligation to update these forward-looking statements to reflect events or circumstances after the date of such statements, except as may be required by law.

Investor Contact: Acurx Pharmaceuticals, Inc.
David P. Luci, President & CEO
Tel: 917-533-1469
Email: davidluci@acurxpharma.com

 

Cision View original content:https://www.prnewswire.com/news-releases/acurx-announces-additional-ibezapolstat-ph2b-results-in-cdi-as-well-as-anthrax-b-anthracis-susceptibility-to-acx-375-analogues-302259491.html

SOURCE Acurx Pharmaceuticals, Inc.

Copyright 2024 PR Newswire

Acurx Pharmaceuticals (NASDAQ:ACXP)
Historical Stock Chart
From Oct 2024 to Nov 2024 Click Here for more Acurx Pharmaceuticals Charts.
Acurx Pharmaceuticals (NASDAQ:ACXP)
Historical Stock Chart
From Nov 2023 to Nov 2024 Click Here for more Acurx Pharmaceuticals Charts.